71 research outputs found

    Atmosphere-like turbulence generation with surface-etched phase-screens

    Get PDF
    We built and characterized an optical system that emulates the optical characteristics of an 8m-class telescope like the Very Large Telescope. The system contains rotating glass phase-screens to generate realistic atmosphere-like optical turbulence, as needed for testing multi-conjugate adaptive optics systems. In this paper we present an investigation of the statistical properties of two phase-screens etched on glass-plate surfaces, obtained from Silios Technologies. Those etched screens are highly transmissive (above 85%) from 0.45 to 2.5 microns. From direct imaging, their Fried parameter r0 values (0.43+-0.04 mm and 0.81+-0.03 mm, respectively, at 0.633 microns) agree with the expectation to within 10%. This is also confirmed by a comparison of measured and expected Zernike coefficient variances. Overall, we find that those screens are quite reproducible, allowing sub-millimetre r0 values, which were difficult to achieve in the past. We conclude that the telescope emulator and phase-screens form a powerful atmospheric turbulence generator allowing systematic testing of different kinds of AO instrumentation.Comment: 10 pages, 8 figures, 3 mpeg movies. Submitted to Optics Expres

    GREGOR: Optics Redesign and Updates from 2018-2020

    Full text link
    The GREGOR telescope was inaugurated in 2012. In 2018, we started a complete upgrade, involving optics, alignment, instrumentation, mechanical upgrades for vibration reduction, updated control systems, and building enhancements and, in addition, adapted management and policies. This paper describes all major updates performed during this time. Since 2012, all powered mirrors except for M1 were exchanged. Starting from 2020, GREGOR observes with diffraction-limited performance and a new optics and instrument layout.Comment: Accepted by A&A, 10 page

    Ground-based coronagraphy with high-order adaptive optics

    Get PDF
    We simulate the actions of a coronagraph matched to diffraction-limited adaptive optics (AO) systems on the Calypso 1.2 m, Palomar Hale 5 m and Gemini 8.1 m telescopes, and identify useful parameter ranges for AO coronagraphy on these systems. We model the action of adaptive wavefront correction with a tapered, high-pass filter in spatial frequency rather than a hard low frequency cutoff, and estimate the minimum number of AO channels required to produce sufficient image quality for coronagraphic suppression within a few diffraction widths of a central bright object (as is relevant to e.g., brown dwarf searches near late-type dwarf stars). We explore the effect of varying the occulting image- plane stop size and shape, and examine the trade-off between throughput and suppression of the image halo and Airy rings. We discuss our simulations in the context of results from the 241-channel Palomar Hale AO coronagraph system, and suggest approaches for future AO coronagraphic instruments on large telescopes

    Ground-Based Coronagraphy with High Order Adaptive Optics

    Get PDF
    We summarize the theory of coronagraphic optics, and identify a dimensionless fine-tuning parameter, F, which we use to describe the Lyot stop size in the natural units of the coronagraphic optical train and the observing wavelength. We then present simulations of coronagraphs matched to adaptive optics (AO) systems on the Calypso 1.2m, Palomar Hale 5m and Gemini 8m telescopes under various atmospheric conditions, and identify useful parameter ranges for AO coronagraphy on these telescopes. Our simulations employ a tapered, high-pass filter in spatial frequency space to mimic the action of adaptive wavefront correction. We test the validity of this representation of AO correction by comparing our simulations with recent K-band data from the 241-channel Palomar Hale AO system and its dedicated PHARO science camera in coronagraphic mode.Comment: To appear in ApJ, May 2001 (28 pages, 10 figs

    Ground-based coronagraphy with high-order adaptive optics

    Get PDF
    We simulate the actions of a coronagraph matched to diffraction-limited adaptive optics (AO) systems on the Calypso 1.2 m, Palomar Hale 5 m and Gemini 8.1 m telescopes, and identify useful parameter ranges for AO coronagraphy on these systems. We model the action of adaptive wavefront correction with a tapered, high-pass filter in spatial frequency rather than a hard low frequency cutoff, and estimate the minimum number of AO channels required to produce sufficient image quality for coronagraphic suppression within a few diffraction widths of a central bright object (as is relevant to e.g., brown dwarf searches near late-type dwarf stars). We explore the effect of varying the occulting image- plane stop size and shape, and examine the trade-off between throughput and suppression of the image halo and Airy rings. We discuss our simulations in the context of results from the 241-channel Palomar Hale AO coronagraph system, and suggest approaches for future AO coronagraphic instruments on large telescopes

    High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    Full text link
    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5m are expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented

    Subpixel real-time jitter detection algorithm and implementation for polarimetric and helioseismic imager

    Get PDF
    The polarimetric and helioseismic imager instrument for the Solar Orbiter mission from the European Space Agency requires a high stability while capturing images, specially for the polarimetric ones. For this reason, an image stabilization system has been included in the instrument. It uses global motion estimation techniques to estimate the jitter in real time with subpixel resolution. Due to instrument requirements, the algorithm has to be implemented in a Xilinx Virtex-4QV field programmable gate array. The algorithm includes a 2-D paraboloid interpolation algorithm based on 2-D bisection. We describe the algorithm implementation and the tests that have been made to verify its performance. The jitter estimation has a mean error of 125  pixel of the correlation tracking camera. The paraboloid interpolation algorithm provides also better results in terms of resources and time required for the calculation (at least a 20% improvement in both cases) than those based on direct calculation

    Differential Effects of Aging on Fore– and Hindpaw Maps of Rat Somatosensory Cortex

    Get PDF
    Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation
    • …
    corecore